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One temperature step away from the critical point
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The disappearance of a wide range of critical fluctuations following a sudden temperature step away from
the critical point is investigated theoretically. The step switches off the strong interaction on length scales
larger than the final state correlation radius. This results in a nonequilibrium free field with fluctuations much
larger than those in the final equilibrium state. In the course of relaxation, these initial non-Gaussian fluctua-
tions decay sequentially on increasing scales, approaching the Gaussian equilibrium distribution. For an adia-
batically insulated system, the theory predicts a power-law approach of the temperature to the new equilibrium.
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[. INTRODUCTION In the Ornstein-Zernicke approximation, rapid tempera-
ture changes in a near-critical system were first considered
Materials in near-critical conditions have unique fluctua-by Fixman[8]. The approximation neglects the strong inter-
tional and thermodynamic features. The scaling theory anéction of critical §<r<r) fluctuations. This strong inter-
the method of renormalization groyfi—4] explain the ob- action of large scale fluctuations is described by the scaling
served singularities of thermodynamic and kinetic charactertheory and the renormalization grodRG) method[1—4].
istics and of the long-range correlations in equilibrium near- The relaxation following a small perturbatiofide|<e,
critical states. Recently, new experimental opportunitiesS€= €in—€n) has been studied using the RG metli@e-4].
especially those provided by the microgravity conditions,Here and below, the subscripts fin and in label the character-
made it possible to investigate nonequilibrium near-criticalistics of the final and the initialt(<0) states of the system. If
state§5—7]. The slow thermal equilibration and large relax- the perturbation is strong, one has to study separately a step
ation times of long-range correlations allow one to substantowards the critical pointr¢ 71>t in) in which a new range
tially perturb the local equilibrium by a rapid change of tem- Of strongly interacting fluctuations appears, and a step away
peratureT, pressureP, and/or other parameters. In a small from the critical point (¢ f,<rc,in) Where a large range of
but macroscopic element of the material, changes may befitical fluctuations disappears. In this paper, we study the
considered as homogeneous. latter case, a sudden large step away from the critical point.
The critical point is manifested by large fluctuations of
the order parametdmagnetic moment in magnets, particle
density in liquid-gas systems, concentration in binary solu-
tions, etc.[2,3]). The critical fluctuations are strongly corre-  The appearance, following a sudden temperature change,
lated at length scales ranging from atomidr,~10 ' cm) of a transient nonequilibrium state is a general phenomenon.
up to the length scale of the correlation radiys The spec- Some details of the relaxation kinetics may depend on the
trum of relaxation timesr(r) of these fluctuations ranges dynamic universality class of the critical system. We assume
from microscopic times-(r,)~10 210 3s up to the re-  that the timer,, of the temperature change is short when
laxation timer(r.). Bothr. and(r.) increase as the system compared to the relaxation times of long-range fluctuations,
nears the critical temperatufie . We consider a system with but 7, is much larger than the relaxation timér,) at the
conserved2,4] order parameter, e.g., the liquid-gas critical atomic length scale,. There is then a range of small length
point at the critical isochore, or a binary solution critical scales for which the temperature change may be treated as
point. In the scaling theory1—4], the correlation radius quasistatic. The small scale degrees of freedom constitute the
yields the power law .=rye” ", and the relaxation time at largest part of the degrees of freedom of the material, playing
the length scale depends on the scatér)=r(r,)e 3”2,  the role of a “thermal bath” for large scales. At times
wheree=(T—T,.)/T, is the reduced temperature. The criti- t> 7(r,) one characterizes this “thermal bath” by a time-
cal exponents>0 andz=0 depend on the universality class dependent temperatur@&(t) and a reduced temperature
of the system. Recently, the ZENO experimgnthas set a €(t)=[T(t)—T.]/T.. The relaxation on large scales is slow,
benchmark e~10'-10%8 r,~1-10 um, and so that on the corresponding time scale one may treat the
7(ro)~10'-10° s; this was achieved under microgravity temperature change as a step at a given tigpechosen as
conditions. One is able to perform a spatially homogeneous.,=0. We consider a system described by a conserved real
temperature changgT (resulting from, e.g., a rapid pressure scalar order parameter. Systems belonging to this universal-
shift) in a time small compared te(r.). A relatively small ity class are liquid-gas critical points and binary solution
sudden change of temperature may strongly perturb the locatitical points.
equilibrium on a wide range of scales, resulting in a near- To describe the fluctuations at different length scales, one
critical transient state of the large scale fluctuations. represents the fielg(r,t) as a sum of Fourier harmonics:

II. DISCUSSION OF THE MODEL
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ka The main suggestion in the above scenario is that the
o(rt)= E de k" (1) relaxation in the nonequilibrium near-critical state is de-
k=0 scribed by the Langevin equatidB) with the external ran-
) . _ . . dom forcef(r,t) having the same properties as in the equi-
The Fourier amplitudeg, yield the conditiong,=#Z. A |iprium state. This may be thought of as an approximation
variable cutoff lengthh =2/k, is introduced in(1) follow-  that may fail for large perturbations of equilibrium. An alter-
ing the Wilson-Kadanoff RG method,,2]. For a system at pa6ve suggestion is that the perturbation changes the exter-
thermodynamic  equilibrium,  the  probability dWeq)  nal force ensemble. An experimental evidence of changes in
=Weqr(#)D ¢(r) to find the system in an elemedt) of the  {he ensemble of external random force due to nonequilibrium
configuration space is defined by the effective Hamiltonian, 55 recently found in a noncritical liqui@]. The test of the
H) [1,2]: theory based on the above scenario will then prove the main
_ suggestion.
Wegn (@)D gp=elPr"FridlkeTep g, The suggested scenario of relaxation allows one to em-
ploy the results of DRG calculatioid—4]. At a given time
F,=—kgT. In f e~ Fr/keTeD ¢, t, one chooses the cutoff length<ie(t). The relaxation on
scalesr >\ then yields the DRG equations determined by
(2)  the effective Hamiltoniam, ¢, and the kinetic operatdr, g,
(Mo T of the final equilibrium state; the initial conditions are de-
Hy=—Freg—kgTc In [%)] e, Freg=F—Fy. fined by the initial state. This states a mathematical model of
relaxation of large-scale fluctuations following a rapid tem-
In the definition(2), H™? is the microscopic Hamiltonian of Perature change, studied in the next section.
the system an(kB is the Boltzmann constant. The equ”ib- The relaxation of the nonequilibrium state releases the
rium free energyr depends on temperature and pressure bugXcess energy that is then converted to heat. To maintain the
not on the configuration of the order parameter fiélgiand ~ temperatureT(t)=const, one couples the internal “heat
Freg are the singular and the regular partsFofrespectively bath” provided by the sma]l scale fluctuatlons 'Fo an ex_terna}I
[2]. The sum in(2) is over states of the system yielding the thermostat. Another experimental opportunity is to adiabati-
condition of giveng(r). cally insulate the system at-t,;>0. The released energy
The order parameter fielgh(r) defined by(1) represents then increases the temperature of the internal “heat bath.”
only a small fraction of the degrees of freedom of the systemAt any timet, the rate of this heating is determined by the
while most of these characteristics describe the details of theelaxation at the scales>\(t), and therefore for the “heat
small length scalesr\). The definition of the effective bath” the slow variation of the temperatuf(t) may be
HamiltonianH, (¢#,€) assumes an average over small scaldreated as a quasistatic process.
degrees of freedom. Up to a regular functionepH, (¢, €)
is the free energy of the system in the state in which all Ill. THE DECAY OF CORRELATIONS FOLLOWING
degrees of freedom have equilibrated except for the given A STEP AWAY FROM THE CRITICAL POINT

large scale fieldp(r). . .
We consider the simple standard model of a one-mod For a temperature step away from the critical point, the

fluctuation kinetics of a conserved scalar order paramet inal equilibrium state of the system is farther from the criti-

field #(r,t) [2,4], with the Langevin equations having the cal point than the initial one. The correlation radiys;, in
form the final state is smaller than ;,; a large step corresponds

to r¢ §n<<rc,n- It is @ known feature of the RG that in the

SH, critical range of scales<r the fluctuation ensemble has, up
— AFX( - % + fx,ext) . (3)  tosmall corrections, the same characteristics as in the critical
point. The fluctuations are then expected to change signifi-

=T¢in- Thi i
The external random forcé, .(r.t) models the “thermal cantly only on scales=r g,. This range includes the scales

bath.” The kinetic operatoF, (the kinetic coefficient in the irnci'tﬁigl<;t§trem belonging to the critical range of scales of the
simplest modeland the effective HamiltoniaH, depend on Accordiﬁg to the above suggestion, &t (. ) the
the cutoff lengthN. The dynamic renormalization group fluctuations on las< (1) N(D)>r .. ' ; ﬁﬂtnh new
(DRG) gives a method to find the changes in Eg).when\ uctuations on sca ( ) ( )>Tq,fin APProac ene
is increased from an old valug to a new value\,>\,. The equilibrium state. The application of the DRG then gives the
- o e L . effective Hamiltonian and the Langevin equations for the
necessary condition of applicability of DRG is thermal equi-4 tuations on the length scales )\g As degcribed i the
librium at length scaled<\,. At scales larger than,, the '

equilibrium is not required, the relaxation on these scales igRG [1,[_4]’ on Iengrt]h Sfﬁleé>rcvfi” a]E_ t'rges’t%:(_l[ﬁ““{
described by the Langevin equations of the theory, and th € system approaches the L>aussian fixed point. 1he Lange-

form of these equations is determined by the equilibrium o yin equations then have the for() with the kinetic coeffi-

scalesR=\. The calculation below comes from this obser- C|entl“=||mh_wl‘k dep‘.‘—‘”d”f‘g Olfin but not on the scala,_
vation. One expects that at any given titter, there will and t}I1e e_ffectlve Hamiltonian having the form of a free field
be a length scal@.(t) such that the fluctuations on scales Hamiltonian[1-3]

A<A¢(t) have approached equilibrium. The relaxation time 1
for a conserved mode increases with length scale, so the Hy= Z He, He=5—
equilibration length\(t) increases in time. k<ky 2 Xfin

¢
at

| il 4
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Here, XﬁnE"mhoc)(x,ﬁrfgnv(z_") is the macroscopic sus- stateG,=0 for n>2. The Gaussian pat, ;; does not con-

ceptibility of the system in the final staighe isothermal tribute toG, with n>2. One obtains then far>2

compressibility for the liquid-gas systemin the range of

scales consideredr&r¢ sin) xsn does not depend on the G (k,,...k,:t)=G(k;, ,_,kn;o)e*Dﬁn<k12+k22+---+kn2>t,

wave vectork. ®)
The reduction of the problem to that of a free field allows Go(ky K Ky 0)=((he - i)

one to solve the problem of long-range fluctuations without ML B2y el Ky K/ /in -

further assumptions. The fluctuations at length scales larger

thanr, are strongly interacting only with the critical range The functionG,(k, —k) =((| ¢(t)|?)) describes the width of

(r<r.) fluctuations but not with each other. Each Fourierthe probability distribution of the harmonies(t):

harmonicseg,(t) yields now a separate equation one derives

from (3) and (4): (Il 20= (I 2= (] il 2 din— (| bl *)din) €%
d +<<|¢ |>> in»
%: _sz %"‘fk,st(t)} (5) K (9)
1
The forcef ¢(t) in (5) is 6 correlated in time, and normal- (bl )~k =277, Fe,in> 1> Fe fin-

ized according to the fluctuation-dissipation theorgty].
The quantityDy,=I"/xs, is the final state diffusion coeffi-
cient, and Eq(5) describes a linear diffusion process in the
presence of a fluctuating currep —I'" gradfg. The gen-
eral solution to the linear equatiofs) may be written as

The correlation functionsG,(rq, ... fy;t) in coordinate
space are related B,,(kq,... k,;t) by the formula

Gu(rq,ra,....ry;t)

1
S(1)= (008t V), KD K2 ® = > bk, (1) i, (D)~ by (1))
ki+ko+--+kp=0
where the first term is the solutiap, ,(t) of the correspond- X @ H(karytkar ot +knrn) (10)
ing homogeneous equations, afgd; describes the motion
induced by the external forck(t). The initial conditions
are determined by the initial equilibrium state in which the

level of fluctuations was much higher than in the final Statefluctuations are still large compared to the final equilibrium.

2\ 2\ 2 . ‘ ! :
Att<m, <|<.bk|. )=l bl >.><|¢'<'St| )- . At t>tg, the irreducible correlation functiors, for n>2
The statistical properties of the fluctuations may bebecome small whileG, approaches the final equilibrium

described with the help of irreducible correlation :
functions [2.10 ) value. The ensemble then approaches the Gaussian form.

=k, (ky ) ko t) -~ (K , 1), defined as

Culki ko, ko =i (D b (1)~ 1 (1)) A rapid increase of the temperature requires more energy
5" | than a slow heating. The effective Hamiltonidip () is by
= InZ|,-0, definition [see formula(2)] the free energy in a state with
dw(ky)do(ky) -~ dwlkn) given ¢,, k<1/\. The entropy in this state is then
() 5 =—ky[H, (¢, €)/aT] = —ky(L/T)dH,/de. From (3)
zs<efw(k)¢k(t)dv>5f el @ EOAVD W g, :t]. one finds the contributios,=k,(1/T){(H)(dIn x/de) of a
single harmonicgp, to the entropy. The single harmonic in-
ternal energyJ, is (according to the thermodynamic formula
U=F+T9 U,=(H,)+ TS5, ~T.S,. Let the initial state be
€n=0,Tcin=2, (| ?)in~k 2" 7[1-3]. In the final equilib-
rium state one findg| ¢y ?)sin~x(€in), K<L ¢ 5. Summing
up the contributions from all large-scale harmonics, one ob-
MRins the excess enerds,, stored att~ 7(r ¢ fn):

On a given length scale=1/k, the ensemble of fluctuations
is then non-Gaussian at timéxts~ 7(k)In A, when the

IV. THE ENERGY OF THE RELAXATION

Here,Z[w(k)] is the generating functiongR,10]. The aver-
ages() and irreducible averagef)) in (7) are over the
instantaneous statistical ensemble. In the first equatién)jn
one setsw(k)=0 after the functional derivatives are taken.
Due to the space homogeneity of the system, the functio

Gh(kq, ... k,;t) may differ from zero only if

ki+k,+---+k,=0. At t=0, the irreducible correlation " 3
functions G, yield the scaling laws given by the scaling U ,(0)=¥ dIn Xfinif (¢ |>_2 dk

theory [2,11]; for all argumentsk in the critical range of sto 2  Jde  xmn Jo Kl/in (23
scales of the initial statk; ~k,~---~k,~k, kr. j>1, one 3v-1

finds G,~k"(~2*"”2_ The irreducible correlationss, for ~NkpTcen ~ (11)

n>2 characterize the deviation of the ensemble from the

Gaussian form. In the initial state, the interaction is strongHere\~r ¢, andN~V/r 3 is the number of molecules in
and the fluctuations are non-Gaussian on scaies; j,. As  the system. At>7(r,) the stored energy is gradually con-
discussed above, the temperature step switches off the strongrted into heat. The released hé€x(t) = U, (0)—Ug(t)
interaction in the range of scalegi,>R>r 4,; in the final  as a function of time is
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Vilny 1 [k ) ) a3 tions with those in the range<r. 4, remains strong and
V=3 G xm fo [(|6x(0)[%) = (I e(D)]9)] 277 results in the singular dependence of the susceptibykity
noAm and of the mobilityl'y;,, on e, . In the final state, a wide range
7(regn) | 2772 of initial critical fluctuations disappears. A step toward the
T) . (12 critical point would lead to the appearance of such a range

[12].

So far we have considered the relaxation in a system In the RG, the strong interaction of fluctuations on a given
where the temperatuf&(t) is maintained constant during the length scale is substantially renormalized by their interaction
relaxation, so that at any time>0, €(t) = eg,. If, instead, ~ Wwith smaller length scales. One considg¢fs2] a Hamil-
one adiabatically insulates the system at tites(r,), the ~ tonianH,=H*+ §H, that has a small deviatiodH, from
time-dependent temperaturd (t) vyields the relation the fixed point. At larger scales this deviation results in a
dQ=C,dT=C,T.de(t), with Cv~ef3iﬁ’2 being the heat ca- crossover from a non-Gaussian to a Gaussian fixed point. In
pacity at constant volume. The approach of the temperaturéis paper, the perturbatiofH, of the Hamiltonian is a dy-
to equilibrium follows now from the forn(12) of the heat namic one, and the equilibration on large length scales is a
release. Fot>7(r 5,) one obtains hierarchical relaxation process.

The scenario considered in this paper assumes the en-
(t)— €~ el T(rein)/t]é,  +=(1+7)/2. (13)  semble of external random forces unchanged by the pertur-
o ) ) ) bation. The predicted decay of correlations may be tested in
The RG prediction, confirmed by experimefts], for 7is  gcattering experiments. Recently, another promising way to
7~=0.033. The new critical exponert, ~0.517 is numeri-  gy,qy the fluctuation ensemble was proposed, based on a
cally close to the value 1/2 one obtains in the mean fieldyirect visualization of the fluctuation pictufa3].
(Landay theory. Temperature “tails” are predicted for the temperature re-
laxation in an adiabatically insulated system; the temperature
V. CONCLUSION DISCUSSION approaches its final equilibrium value from below by a
power law.

ocUstor(o){l_<

A rapid temperature step away from the critical point trig-
gers a hierarchical relaxation of long-range fluctuations. The
short time equilibration of small scale<€r. g, fluctuations
leads to an increase of the nonequilibrium free energy of
large scale (>r ;) fluctuations due to a decrease of the It is a pleasure to acknowledge R. W. Gammon, V. L.
susceptibility, while the large scale configuration remainsPokrovsky, M. A. Ratner, and R. Allen Wilkinson for helpful
unchanged. The interaction of fluctuations inside the rangediscussions. This study was supported by NASA Grant No.
r>r. i, becomes weak; the interaction of large scale fluctuaNAG3-1617.
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