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The disappearance of a wide range of critical fluctuations following a sudden temperature step away from
the critical point is investigated theoretically. The step switches off the strong interaction on length scales
larger than the final state correlation radius. This results in a nonequilibrium free field with fluctuations much
larger than those in the final equilibrium state. In the course of relaxation, these initial non-Gaussian fluctua-
tions decay sequentially on increasing scales, approaching the Gaussian equilibrium distribution. For an adia-
batically insulated system, the theory predicts a power-law approach of the temperature to the new equilibrium.
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I. INTRODUCTION

Materials in near-critical conditions have unique fluctua-
tional and thermodynamic features. The scaling theory and
the method of renormalization group@1–4# explain the ob-
served singularities of thermodynamic and kinetic character-
istics and of the long-range correlations in equilibrium near-
critical states. Recently, new experimental opportunities,
especially those provided by the microgravity conditions,
made it possible to investigate nonequilibrium near-critical
states@5–7#. The slow thermal equilibration and large relax-
ation times of long-range correlations allow one to substan-
tially perturb the local equilibrium by a rapid change of tem-
peratureT, pressureP, and/or other parameters. In a small
but macroscopic element of the material, changes may be
considered as homogeneous.

The critical point is manifested by large fluctuations of
the order parameter~magnetic moment in magnets, particle
density in liquid-gas systems, concentration in binary solu-
tions, etc.@2,3#!. The critical fluctuations are strongly corre-
lated at length scalesr ranging from atomic~r 0;1027 cm!
up to the length scale of the correlation radiusr c . The spec-
trum of relaxation timest(r ) of these fluctuations ranges
from microscopic timest(r 0);10212–10213 s up to the re-
laxation timet(r c). Both r c andt(r c) increase as the system
nears the critical temperatureTc . We consider a system with
conserved@2,4# order parameter, e.g., the liquid-gas critical
point at the critical isochore, or a binary solution critical
point. In the scaling theory@1–4#, the correlation radius
yields the power lawr c5r 0e

2n, and the relaxation time at
the length scaler depends on the scalet(r )5t(r 0)e

2(3n1z),
wheree5(T2Tc)/Tc is the reduced temperature. The criti-
cal exponentsn.0 andz>0 depend on the universality class
of the system. Recently, the ZENO experiment@7# has set a
benchmark e;1027–1028, r c;1–10 mm, and
t(r c);101–103 s; this was achieved under microgravity
conditions. One is able to perform a spatially homogeneous
temperature changedT ~resulting from, e.g., a rapid pressure
shift! in a time small compared tot(r c). A relatively small
sudden change of temperature may strongly perturb the local
equilibrium on a wide range of scales, resulting in a near-
critical transient state of the large scale fluctuations.

In the Ornstein-Zernicke approximation, rapid tempera-
ture changes in a near-critical system were first considered
by Fixman@8#. The approximation neglects the strong inter-
action of critical (r 0!r,r c) fluctuations. This strong inter-
action of large scale fluctuations is described by the scaling
theory and the renormalization group~RG! method@1–4#.

The relaxation following a small perturbation~udeu!e,
de5efin2ein! has been studied using the RG method@2–4#.
Here and below, the subscripts fin and in label the character-
istics of the final and the initial (t,0) states of the system. If
the perturbation is strong, one has to study separately a step
towards the critical point (r c,fin@r c, in) in which a new range
of strongly interacting fluctuations appears, and a step away
from the critical point (r c,fin!r c, in) where a large range of
critical fluctuations disappears. In this paper, we study the
latter case, a sudden large step away from the critical point.

II. DISCUSSION OF THE MODEL

The appearance, following a sudden temperature change,
of a transient nonequilibrium state is a general phenomenon.
Some details of the relaxation kinetics may depend on the
dynamic universality class of the critical system. We assume
that the timetch of the temperature change is short when
compared to the relaxation times of long-range fluctuations,
but tch is much larger than the relaxation timet(r 0) at the
atomic length scaler 0 . There is then a range of small length
scales for which the temperature change may be treated as
quasistatic. The small scale degrees of freedom constitute the
largest part of the degrees of freedom of the material, playing
the role of a ‘‘thermal bath’’ for large scales. At times
t@t(r 0) one characterizes this ‘‘thermal bath’’ by a time-
dependent temperatureT(t) and a reduced temperature
e(t)5[T(t)2Tc]/Tc . The relaxation on large scales is slow,
so that on the corresponding time scale one may treat the
temperature change as a step at a given timetch, chosen as
tch50. We consider a system described by a conserved real
scalar order parameter. Systems belonging to this universal-
ity class are liquid-gas critical points and binary solution
critical points.

To describe the fluctuations at different length scales, one
represents the fieldf~r ,t! as a sum of Fourier harmonics:
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f~r ,t !5 (
k50

kl

fke
2 ikr . ~1!

The Fourier amplitudesfk yield the conditionfk5f2k* . A
variable cutoff lengthl52p/kl is introduced in~1! follow-
ing the Wilson-Kadanoff RG method@1,2#. For a system at
thermodynamic equilibrium, the probability dWeq,l
5weq,l(f)Df~r ! to find the system in an elementDf of the
configuration space is defined by the effective Hamiltonian
Hl @1,2#:

weq,l~f!Df5e@Fl2Hl~f!#/kBTcDf,

Fl52kBTc ln E e2Hl /kBTcDf,

~2!

Hl52F reg2kBTc ln (
@f~r !#

e2H~mic!/kBTc, F reg5F2Fl .

In the definition~2!, H ~mic! is the microscopic Hamiltonian of
the system andkB is the Boltzmann constant. The equilib-
rium free energyF depends on temperature and pressure but
not on the configuration of the order parameter field;Fl and
F reg are the singular and the regular parts ofF, respectively
@2#. The sum in~2! is over states of the system yielding the
condition of givenf~r !.

The order parameter fieldf~r ! defined by~1! represents
only a small fraction of the degrees of freedom of the system,
while most of these characteristics describe the details of the
small length scales (r,l). The definition of the effective
HamiltonianHl(f,e) assumes an average over small scale
degrees of freedom. Up to a regular function ofe, Hl(f,e)
is the free energy of the system in the state in which all
degrees of freedom have equilibrated except for the given
large scale fieldf~r !.

We consider the simple standard model of a one-mode
fluctuation kinetics of a conserved scalar order parameter
field f~r ,t! @2,4#, with the Langevin equations having the
form

]f

]t
52DGlS 2

dHl

df
1 f l,extD . ~3!

The external random forcef l,ext~r ,t! models the ‘‘thermal
bath.’’ The kinetic operatorGl ~the kinetic coefficient in the
simplest model! and the effective HamiltonianHl depend on
the cutoff lengthl. The dynamic renormalization group
~DRG! gives a method to find the changes in Eq.~3! whenl
is increased from an old valuel1 to a new valuel2.l1. The
necessary condition of applicability of DRG is thermal equi-
librium at length scalesl,l2. At scales larger thanl2, the
equilibrium is not required, the relaxation on these scales is
described by the Langevin equations of the theory, and the
form of these equations is determined by the equilibrium on
scalesR<l. The calculation below comes from this obser-
vation. One expects that at any given timet.tch there will
be a length scaleleq(t) such that the fluctuations on scales
l,leq(t) have approached equilibrium. The relaxation time
for a conserved mode increases with length scale, so the
equilibration lengthleq(t) increases in time.

The main suggestion in the above scenario is that the
relaxation in the nonequilibrium near-critical state is de-
scribed by the Langevin equation~3! with the external ran-
dom force f ~r ,t! having the same properties as in the equi-
librium state. This may be thought of as an approximation
that may fail for large perturbations of equilibrium. An alter-
native suggestion is that the perturbation changes the exter-
nal force ensemble. An experimental evidence of changes in
the ensemble of external random force due to nonequilibrium
was recently found in a noncritical liquid@9#. The test of the
theory based on the above scenario will then prove the main
suggestion.

The suggested scenario of relaxation allows one to em-
ploy the results of DRG calculations@1–4#. At a given time
t, one chooses the cutoff lengthl,leq(t). The relaxation on
scalesr.l then yields the DRG equations determined by
the effective HamiltonianHl,fin and the kinetic operatorGl,fin
of the final equilibrium state; the initial conditions are de-
fined by the initial state. This states a mathematical model of
relaxation of large-scale fluctuations following a rapid tem-
perature change, studied in the next section.

The relaxation of the nonequilibrium state releases the
excess energy that is then converted to heat. To maintain the
temperatureT(t)5const, one couples the internal ‘‘heat
bath’’ provided by the small scale fluctuations to an external
thermostat. Another experimental opportunity is to adiabati-
cally insulate the system att.t1.0. The released energy
then increases the temperature of the internal ‘‘heat bath.’’
At any time t, the rate of this heating is determined by the
relaxation at the scalesr.leq(t), and therefore for the ‘‘heat
bath’’ the slow variation of the temperatureT(t) may be
treated as a quasistatic process.

III. THE DECAY OF CORRELATIONS FOLLOWING
A STEP AWAY FROM THE CRITICAL POINT

For a temperature step away from the critical point, the
final equilibrium state of the system is farther from the criti-
cal point than the initial one. The correlation radiusr c,fin in
the final state is smaller thanr c, in ; a large step corresponds
to r c,fin!r c, in . It is a known feature of the RG that in the
critical range of scalesr,r c the fluctuation ensemble has, up
to small corrections, the same characteristics as in the critical
point. The fluctuations are then expected to change signifi-
cantly only on scalesr>r c,fin . This range includes the scales
r c,fin,r,r c, in belonging to the critical range of scales of the
initial state.

According to the above suggestion, att.t(r c,fin) the
fluctuations on scalesr<l(t), l(t)@r c,fin approach the new
equilibrium state. The application of the DRG then gives the
effective Hamiltonian and the Langevin equations for the
fluctuations on the length scalesr.l. As described in the
DRG @1–4#, on length scalesl@r c,fin at times t@t(r c,fin)
the system approaches the Gaussian fixed point. The Lange-
vin equations then have the form~3! with the kinetic coeffi-
cientG5liml→`Gl depending onefin but not on the scalel,
and the effective Hamiltonian having the form of a free field
Hamiltonian@1–3#

Hl5 (
k,kl

Hk , Hk5
1

2xfin
ufku2. ~4!
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Here, xfin[liml→`xl,fin;efin
2n(22h) is the macroscopic sus-

ceptibility of the system in the final state~the isothermal
compressibility for the liquid-gas system!. In the range of
scales considered (r.r c,fin) xfin does not depend on the
wave vectork.

The reduction of the problem to that of a free field allows
one to solve the problem of long-range fluctuations without
further assumptions. The fluctuations at length scales larger
than r c are strongly interacting only with the critical range
(r,r c) fluctuations but not with each other. Each Fourier
harmonicsfk(t) yields now a separate equation one derives
from ~3! and ~4!:

dfk

dt
52Gk2F fk

xfin
1 f k,st~ t !G . ~5!

The forcef k,st(t) in ~5! is d correlated in time, and normal-
ized according to the fluctuation-dissipation theorem@2,4#.
The quantityDfin5G/xfin is the final state diffusion coeffi-
cient, and Eq.~5! describes a linear diffusion process in the
presence of a fluctuating currentj52G grad f st. The gen-
eral solution to the linear equations~5! may be written as

fk~ t !5fk~0!e2t/tk1fk,st~ t !, tk5
1

Dfink
2 , ~6!

where the first term is the solutionfk,h(t) of the correspond-
ing homogeneous equations, andfk,st describes the motion
induced by the external forcef st(t). The initial conditions
are determined by the initial equilibrium state in which the
level of fluctuations was much higher than in the final state.
At t,tk , ^ufku

2&'^ufk,hu
2&@^ufk,stu

2&.
The statistical properties of the fluctuations may be

described with the help of irreducible correlation
functions @2,10# Gn~k1,k2,k3, . . . ,kn ;t!
5Š^f~k,t!f~k1,t!f~k2,t!•••f~kn ,t!&‹t defined as

Gn~k1 ,k2 ,...,kn ;t ![Š^fk1
~ t !fk2

~ t !•••fkn
~ t !&‹

[
dn

dv~k1!dv~k2!•••dv~kn!
ln Zuv50 ,

~7!

Z[^e*v~k!fk~ t !dV&[E e*v~k!fk~ t !dVDW@fk ;t#.

Here,Z@v~k!# is the generating functional@2,10#. The aver-
ages^ & and irreducible averagesŠ^ &‹ in ~7! are over the
instantaneous statistical ensemble. In the first equation in~7!,
one setsv~k!50 after the functional derivatives are taken.
Due to the space homogeneity of the system, the functions
Gn~k1, . . . ,kn ;t! may differ from zero only if
k11k21•••1kn50. At t50, the irreducible correlation
functionsGn yield the scaling laws given by the scaling
theory @2,11#; for all argumentsk in the critical range of
scales of the initial statek1;k2;•••;kn;k, krc, in@1, one
finds Gn;kn(221h)/2. The irreducible correlationsGn for
n.2 characterize the deviation of the ensemble from the
Gaussian form. In the initial state, the interaction is strong
and the fluctuations are non-Gaussian on scalesr,r c, in . As
discussed above, the temperature step switches off the strong
interaction in the range of scalesr c, in.R.r c,fin ; in the final

stateGn50 for n.2. The Gaussian partfk,st does not con-
tribute toGn with n.2. One obtains then forn.2

Gn~k1 ,...,kn ;t !5Gn~k1 ,...,kn ;0!e2Dfin~k1
21k2

21•••1kn
2!t,
~8!

Gn~k1 ,k2 ,...,kn ;0![Š^fk1
•••fkn

&‹in .

The functionG2(k,2k)5Š^ufk(t)u
2&‹ describes the width of

the probability distribution of the harmonicsfk(t):

Š^ufku2&‹t5Š^ufk~ t !u2&‹5~Š^ufku2&‹in2Š^ufku2&‹fin!e2t/tk

1Š^ufku&‹fin ,
~9!

Š^ufku2&‹in;k221h, r c, in@
1

k
@r c,fin .

The correlation functionsGI n~r1, . . . ,rn ;t! in coordinate
space are related toGn(k1 ,...,kn ;t) by the formula

GI n~r 1 ,r 2 ,...,r n ;t !

5 (
k11k21•••1kn50

Š^fk1
~ t !fk2

~ t !•••fkn
~ t !&‹

3e2 i ~k1r11k2r21•••1knr n!. ~10!

On a given length scaler51/k, the ensemble of fluctuations
is then non-Gaussian at timest!tG;t(k)ln Ak , when the
fluctuations are still large compared to the final equilibrium.
At t.tG , the irreducible correlation functionsGn for n.2
become small whileG2 approaches the final equilibrium
value. The ensemble then approaches the Gaussian form.

IV. THE ENERGY OF THE RELAXATION

A rapid increase of the temperature requires more energy
than a slow heating. The effective HamiltonianHl(f) is by
definition @see formula~2!# the free energy in a state with
given fk , k,1/l. The entropy in this state is then
Sl52kb[ ]Hl(f,e)/]T]52kb(1/Tc)]Hl/]e. From ~3!
one finds the contributionsk5kb(1/Tc)^Hk&~] ln x/]e! of a
single harmonicfk to the entropy. The single harmonic in-
ternal energyUk is ~according to the thermodynamic formula
U5F1TS! Uk5^Hk&1Tcsk'Tcsk . Let the initial state be
ein50, r c, in5`, ^ufku

2& in;k221h @1–3#. In the final equilib-
rium state one findŝufku

2&fin;x~efin!, k!1/r c,fin . Summing
up the contributions from all large-scale harmonics, one ob-
tains the excess energyUstor stored att;t(r c,fin):

Ustor~0!5
V

2

] ln xfin

]e

1

xfin
E
0

1/l

^ufku& in
2 d3k

~2p!3

'NkbTcefin
3n21. ~11!

Herel;r c,fin , andN;V/r 0
3 is the number of molecules in

the system. Att.t(r l) the stored energy is gradually con-
verted into heat. The released heatQ(t)5Ustor~0!2Ustor(t)
as a function of time is
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Q~ t !5
V

2

] ln x

]efin

1

xfin
E
0

kl

@^ufk~0!u2&2^ufk~ t !u2&#
d3k

~2p!3

}Ustor~0!F12S t~r c,fin!

t D ~11h!/2G . ~12!

So far we have considered the relaxation in a system
where the temperatureT(t) is maintained constant during the
relaxation, so that at any timet.0, e(t)5efin . If, instead,
one adiabatically insulates the system at timest.t(r fin!, the
time-dependent temperatureT(t) yields the relation
dQ5CvdT5CvTcde(t), with Cv;e fin

3n22 being the heat ca-
pacity at constant volume. The approach of the temperature
to equilibrium follows now from the form~12! of the heat
release. Fort.t(r c,fin) one obtains

e~ t !2efin;efin@t~r c,fin!/t#
z1, z15~11h!/2. ~13!

The RG prediction, confirmed by experiments@11#, for h is
h'0.033. The new critical exponentz1'0.517 is numeri-
cally close to the value 1/2 one obtains in the mean field
~Landau! theory.

V. CONCLUSION DISCUSSION

A rapid temperature step away from the critical point trig-
gers a hierarchical relaxation of long-range fluctuations. The
short time equilibration of small scale (r,r c,fin) fluctuations
leads to an increase of the nonequilibrium free energy of
large scale (r.r c,fin) fluctuations due to a decrease of the
susceptibility, while the large scale configuration remains
unchanged. The interaction of fluctuations inside the range
r.r c,fin becomes weak; the interaction of large scale fluctua-

tions with those in the ranger,r c,fin remains strong and
results in the singular dependence of the susceptibilityxfin
and of the mobilityGfin on efin . In the final state, a wide range
of initial critical fluctuations disappears. A step toward the
critical point would lead to the appearance of such a range
@12#.

In the RG, the strong interaction of fluctuations on a given
length scale is substantially renormalized by their interaction
with smaller length scales. One considers@1,2# a Hamil-
tonianHl5H*1dHl that has a small deviationdHl from
the fixed point. At larger scalesl, this deviation results in a
crossover from a non-Gaussian to a Gaussian fixed point. In
this paper, the perturbationdHl of the Hamiltonian is a dy-
namic one, and the equilibration on large length scales is a
hierarchical relaxation process.

The scenario considered in this paper assumes the en-
semble of external random forces unchanged by the pertur-
bation. The predicted decay of correlations may be tested in
scattering experiments. Recently, another promising way to
study the fluctuation ensemble was proposed, based on a
direct visualization of the fluctuation picture@13#.

Temperature ‘‘tails’’ are predicted for the temperature re-
laxation in an adiabatically insulated system; the temperature
approaches its final equilibrium value from below by a
power law.
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